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A quasi-inverse finite hybrid element code has been written to supply a precise and con- 
sistent solution of the Grad-Shafranov equation to the ideal linear MHD stability code 
ERATO. To Iit the behavior at the plasma surface and in the region around the magnetic axis, 
adequate coordinate transformations are made. A Picard iteration is used to treat the non- 
linearity of the source term. One Picard step is carried out by solving the weak form of the 
partial differential equation by an isoparametric finite hybrid element approach (FHE). After 
each Picard step, the nodal points are readjusted such that they fall on the initially prescribed 
flux surfaces. This enables us to accumulate the nodal points in those regions where good 
precision is needed for the stability code. While a %point integration is necessary for a confor- 
ming finite element scheme, a l-point integration is sufficient in a FHE approach. Coding the 
FHE is very simple and easily \ectorizable. For a given resolution. the precision of global 
quantities. such as the total flux, is the same for both methods but the FHE approach is 
faster. #!5 19Y7 Academic Press, lnc 

1. TNTRODUCT~~N 

Finite difference and finite element methods approximate the exact solution Y of 
a second-order partial differential equation in the following way: 

/I !P/, - Y’![ < cO(h’): 

where h and I represent the discretization mesh size and the order of the 
approximation, respectively. The value of the constant c strongly depends on the 
choice of the coordinate system and on how well the solution is approximated 
locally. For instance, c becomes large if the boundary is poorly represented. 

To obtain a small Jj (u, - Yjl, one can choose between a high-order approach (I 
large), a fine grid (h small), and a formulation leading to a small value of c. 
However, the computational physicist is also concerned with the manpower 
necessary to achieve those goals, as well as the possibility of vectorizing the com- 
puter code. Often, these are suflkient reasons against high-order approaches. Also, 
high-order approaches can lead to the Gibbs phenomenon (parasitic overshoot 
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oscillations) for solutions which vary rapidly in a localized region but are smooth 
elsewhere (see, for instance, Ref. [ 1 ] ). In such situations, mesh accumulation helps 
to increase the precision of the approximate solution. For such cases a finite 
element method is preferable to a finite difference method where I decreases for a 
nonequidistant mesh. Besides h and I, the constant c in Eq. (1) plays an important 
role in the actual precision of the approximate solution 'I/,. It is especially this 
constant that we try to keep small in our approach. We minimize the error of !Pir 
by: 

(a) Choosing a coordinate system to represent the boundary as closely as 
possible and to fit the analytic behavior of the solution YJ7 around particular points 
in the domain, particularly around the axis. 

(b) Readjusting the grid iteratively to lit physically important surfaces. 

(c) Accumulating the mesh around these surfaces. 

(d) Choosing nonconforming isoparametric finite hybrid elements instead of 
conforming isoparametric elements to reduce a d-point integration scheme to a 
l-point integration formula. This reduces computing time of the matrix elements 
and eases vectorization. 

This proceeding is applied to the fixed boundary Grad-Shafranov equation 
describing the equilibrium state of a thermonuclear tokamal fusion plasma (see Ref. 
VI). 

2. PHYSICAL PROBLEM 

2.1. Equilibrium Equation 

In natural units [3] the static ideal MHD equilibrium equations are 

Vp=(VxB)xB 

V*B=O. 

(2al 

(2b) 

Let us restrict consideration to axisymmetric geometry for which the toroidal angle 
4 is an ignorable coordinate (Fig. 1). For this geometry, Eq. (2b) is satisfied by 

By dotting Eq. (2a) with Vq5 and B. respectively, one finds that p and T are con- 
stant on constant-v surfaces. Dotting Eq. (2a) with V!P gives the Grad-Shafranov 
equation in the plasma domain @, 
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FIG. 1. The axisymmetric geometry for JET. Quasi-inverse solution a( Y, 8) in the (r, z) plane using 
finite hybrid elements. 

where Y is the distance from the symmetry axis (see Fig. 1). We restrict ourselves to 
the fixed boundary problem for which 

at the plasma surface r. 

Y=O (5) 

To solve Eq. (4) one can prescribe two arbitrary functions p( !P) and T( !P). In 
general they are nonlinear functions in ‘P. In practice they are chosen such that 
Y( Y, r) = 0 at r and, as a consequence, the trivial solution Y= 0 satisfies (4) and 
(5). To avoid this particular solution, we have to normalize our system by deman- 
ding, for instance, that the total toroidal current 

be imposed. Here, d’x is the area element in Q. Condition (6) can be imposed by 
scaling the source 

and solving for A. 

Y=/zY” (7) 

2.2. Variational Fornz 

Introducing LJ to be the set of all functions u E L2(Q),‘/V~~/ E L’(Q), ZJ = 0 at r, 
and zl<O in Q, problem equations (4)-(7) can be written in their weak form (see 
Ref. [4]): 

’ L’(G) means: square integrable functions in n. 
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“Find a real number A and !Pc U such that 

171 

(8) 

for ail q E U such that for a given I 

3.3. Goorditzates to Fit I- and Axis 

To fit the plasma surface precisely and to guarantee regularity at the magnetic 
axis, a new coordinate system (<a, 6) is introduced. It is related to the cylindrira! 
coordinates (P, z) through 

The center of the coordinate system is given by LZ = 0, corresponding to the point 
(I?,: 0) in the (r, z-) coordinate system. The plasma surface r is given by LZ = i. The 
gwen function ~~~(6) describes the form of I-. 

2.4. Readjusrment atld Accutnulation of the Mesh 

We iteratively readjust the grid to guarantee regularity of the solution at the 
magnetic axis and to fit the physically relevant Y = constant surfaces. At the end of 
each Picard step the values of R, and P are recalculated such that the point I’ = R,. 
: = 0 falls on the minimum of ‘Y in Q and that the grid points (aU, @,, I= 1, IV,) fall 
on prescribed !P, surfaces. This makes it possible to accumulate the grid around 
singular Y surfaces, a procedure necessary to deliver a precise enough solution to 
the linear ideal MHD stability code ERATO. We call this a quasi-inverse approach. 

3. FORMULATION OF THE APPROXIMATE PROBLEM 

3.1~ Picard iterarion 

The nonlinear problem (8 j is solved iteratively by a Picard method. Let P’ and 
ik be the approximate solution after k iteration steps. Then ‘P’ + 1 and 1” + ’ are 
determined by: 

“Find real numbers A” + ’ and Yk + ‘ E U such that*) 

’ Y*” means: evaluate Y* using Y”. 
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for all q E U and such that for a given value of I 

iktl C/%k+ 1 dzx = 1.” 

As an initial guess for p one often takes a previously calculated solution in the 
same domain Q with slightly different parameters in the source function. In most 
practical cases, the Picard method converges. In the few cases where it does not 
converge, a continuation method can be used (see Ref. [S]). 

3.2. Conforming Approximation 

Let us subdivide the domain D in N, x Nz or N, x NB mesh cells and let U,, be a 
finite-dimensional subspace of U. A Ritz--Galerkin method for approximating the 
eigenelements ( luk + ‘, /Ik + ’ ) of formulation (10) reduces to: 

“Find real numbers 2; + r and functions !8$ + ’ E Ci,T such that 

s 32r 
Yz” q,, d2x = 0 ill) 

for all ylh E U,r and such that for a given I 

In (r, z) coordinates U,, is the set of all functions u,, EL’(Q), au,,/& E L’(Q)), 
duJ& E L’(Q), u,~ = 0 at r, and u,, < 0 in Q. Formulation (11) then becomes: 

“Find real numbers 1; + ’ and functions !8$ + ’ E U,, such that 

for all ~1,~ E U,, and such that for a given I 

/Ik+’ 
h 

9,Ta + ’ dr dz = I.” 

In (~,0) coordinates Q={O<m<l, 0<8<27r}, r={a=l,Od8,<2rc}, 
and U, is the set of all functions uh E L*(Q), hh@aE L2(Q), dL@%k L’(B), 
tih (E= 1, f3) = 0, ~,(a, (3) = u,,(cP, 19 + 2nn), where n is an integer and u,~ ~0 in 52. 
Formulation (11) then is: 
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“Find a real number 1: + l and functions !Pi + l E U, such that 

x 
1 ah &r/de av, ----- 

2~ a0 pr aa )I dB 

for all qh E U,, and for a given I 

3.3. Nonconforming Approximation 

In addition to U,, , let us introduce three finite-dimensional spaces: 

U, is the set of all functions u1 E L2(Q), such that uI (a = 1,6)= 0, 
~,(a, 0) = U~(LZ, 8 -t 2nrr), where n is an integer and uI ~0 in L?; 

U2 is the set of all functions USE L’(Q), such that au,/&rEk’(Q), 
u2 (a = 1, 0) = 0, z~~(R, 6) = ~,(a, 0 + 2mc), where n is an integer and z12 < 0 in ~‘2; 
and 

U3 is the set of all functions USE L’(Q), such that du,/ii%EL’(L?), 
tij (le = 1, @) = 0, ~,(a, 0) = U,(CP, C-I - 2mc), where n is an integer and u3 < 0 in ,Q. 

Formulation (13) can then be rewritten in a more complicated way: 

“Find real numbers 1; + ’ and functions YE + ’ E U,, YI E U, ) ly2 E Uz, and Y, E Uj 
such that3 

s 1 diz s 2x(!&‘;+‘-Y,)[,d6=0, i = 1, 2, 3, 
0 0 

(‘4) 

(IS> 

3 YPf” means: evaluate YFk using Yt. 

581.73:1-12 
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for all [;E L’(Q), i= 1, 2, 3, and such that for a given Z 

Note that formulations (13) and (14)-( 16) are identical since the integral con- 
ditions (15) imply that 

y’-= y;+ 1 i= 1, 2, 3. (171 

However, they differ if the functions iyi, i = 1, 2. 3, are chosen in a linite-dimen- 
sional function space. 

4. LOWEST-ORDER FINITE ELEMENTS 

4.1. Choice of Finite Elements 

In a first step we subdivide the domain Q = (0 < re < 1, 0 < 6, < 2n) into N, x NB 
rectangular mesh cells. As functions q/,, vi, q2, rIj, CL: i2, and i3 we choose bilinear 
finite elements defined by (i = 1, . ..) N,;j = 1, . . . . Ns) 

ylh = e,(m) . ei(e) 

‘11=ci-li2(W).C,-1’2(N) 

yI2 = e,(a) . c,- l,2(@ 

11~ = ci- &LZ) . e,(O) 

(18) 

The finite elements ck- &x) and ek(x) are 

(19) 

(20) 
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The unknowns Yi+ ‘, Yv,, Y,, and Y’, are expanded 
elements 

Y~+‘(R, 0)= C 1 Y,.je,(a)ej(B) 
i=O j=O 

in terms of the finite 

i-0 J= 1 

When bilinear finite elements (Eqs. (21 j) are chosen to represent Y:’ ‘! the 
integrals in the formulation ( 13) have to be performed by a 4-point Gauss formula. 

4.2. Conforming Isoparametric Firlite Elements 

Let us now discretize the domain Q into N, x N, quadrangular (nonrectangular) 
mesh cells. In this case we have to perform local variable transformations 
(n, 6) + (5,~) of the form 

The eight parameters c(r to LX? and fir to /I4 are determined by the coordinates or 
to cp3 and 8, to 8, (see Fig. 2): 

FIG. 2, Transformation from a quadrangular ccl! in the (LP, 0) plane to a unit square in the (<, 11 
plane. 
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In order to prevent problems concerning integration and uniqueness of the trans- 
formation (23), we demand that all angles of the quadrangles be smaller than n. 

By transforming from (a, 0) to (t, x), the surface element becomes 

dmde = Jd( dx , (24) 

where 

J= 
1 

a5 ax at ax = (4 + ~4X)(P3 + P40 - (P2 -+ P‘lX)(% + $0 (25) 
----_ 
aade ae da 

is the Jacobian. In these new (?j, xj coordinates the derivatives of any quantity A 
become 

(26) 

One has to note that these formulae are still valid when the quadrangle 
degenerates into a triangle as can happen at the origin of a cylindrical coordinate 
system. 

The finite elements now have to be constructed in such a way that c~;_ 1/2(x) be 
piecewise constant in 5 or 51 and that ek(.x) be linear in < or in x. The precise 
functional dependences of the elements in the (E, 0) plane can be found through the 
transformation (22). 

In practice, one knows the coordinates a and 0 of the four edge points of a cell. 
These define the transformation equations (23) and, consequently, the Jacobian 
through Eq. (25). The 4-point Gauss integration is performed in the (j’, x) plane. A 
back-transformation is necessary to determine the positions of the Gauss points in 
the (m, 0) plane. 

4.3. Non conforming hoparametric Finite Hybrid Elemellts 

Let us first consider the case of a rectangular (a, 0) mesh. Choosing the elements 
of Eqs. (18) for q,, , rll, p12> v~, i,, c2, and cj and the expansion equations (21) for 
!Pi + ’ ~ Y,, Y1, and Yj, the integral conditions (Eqs. (15)) in the formulation 
given by Eqs. (14)-(16), correspond to 

Y. r-1/2,j-,1/2=~(lyi--,j--l+ lyi,j-~+~i-I,jfyi.j) 

yi,j-l/2=t(yi,j-l + yi,.j) (27) 

yi-~/*,j=4(yi-~,j+ yi,j). 

As a consequence, the derivatives of Yz with respect to R and Y, with respect to 
8 become centered finite differences 
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It is for this reason that we originally called this non-conforming approach a 
“finite hybrid element method.” 

All the quantities in Eqs. (14) and (16) including q and Y are now piecewise con- 
stant in each mesh cell. If, in each mesh cell, we approximate all the coefficients, i.e., 
R, pr, and dpJd5, by their 
and (16) simply become 

values at the center of the cell, the integrals in Eqs. ( 14) 

Let us now consider the case of a quadrangular. i.e., nonrectangular mesh. Again 
we perform a local variable transformation as given by Eqs. (22). Again choosing 
all the quantities to be piecewise constant in a (5, x) cell, a one-point integration 
formula is again sufficient and can be written directly in the (a?, 6) plane as 

+ (@i-l,j-I -re;,j)(~i.j-:-rcII-i,j)l. 
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For the test functions ye, one has to take the values at the center of the (t, x) cells 
and transform them back to the (a, 0) plane. The test functions attributed to the 
four nodal values Yi _ I,i- 1, Pi, j- 1, Pi- ,,j, !PV in the mesh cell are 

yl1= ($, b, i, +, 

arl2 Qi-l,j-Qi,j-1 Qi,j-Qi-l,j-l Qi.j-Qi-l,j--1 Qi-l,j-Qi,j-l 

da?= - 2Ji-l!,,i-,/2 ’ 2Jipl/z,j-~ l/2 ’ - 2Ji-,/,,j-1/2 ’ 2J;-,p,jm 112 ( 

all3 - 1 1 

G= 
@i-l,j @i,.i- leij -Ri-l,j- “i-j-“i-l.j-1 “i-1.j 

2Ji -1/2,j-l1,‘2 ’ - 2Ji- 1/2,j--/z ’ 2Ji-1/2,j-l/2 ’ - 2Ji-1/2.j-l1/2 

A practical application of the use of finite hybrid elements is presented in Ref. 
[1] with the corresponding computer code for the case of the linear ideal MHD 
stability code ERATO in toroidal geometry. 

5. RESULTS 

5.1. Solov ‘ev Equilibrium 
Let us first compare the conforming and the nonconforming hybrid element 

approaches using the analytic Solov’ev equilibrium solution given by 

gy= - 2YJl+ E2)/a2E2 

dT2 
-@=-0 

(33) 

(Tq4) hybrid 

---------- 

lZ,@l conformrng . 

1.0006 

, I I I 

64 32 24 

FIG. 3. Convergence studies for the total poloidal flux Ys and the position of the magnetic axis R. 
for the conforming and finite hybrid element approaches. A straight line means quadratic convergence. 
Its slope defines c. Solov’ev equilibrium: E= 1, a = 0.4, dp/dY = -2. The analytic values are Ys = 0.08 
and R, = 1. 
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with the surface parametrization ~~(8) determined from 

a2 = EP2(1 + ~~(8) cos 61)2 p;(Q) sin% 

+ 0.25 (2 + pr(B) cos ej2 p;(e) cos2e. 
(34) 

Here, a, E, and uj;. denote the inverse aspect ratio, the elongation, and the total 
flux. The position of the magnetic axis is at r = R,= 1. Note that 
p,(O)=,/=-1 and pr(rc)= l-J=. 

In Fig. 3 we show convergence studies of the approximated solutions 
corresponding to the set of parameters N = 0.4. E = 1, and dpjd!P = -2. We see that 
both methods, the conforming and the hybrid finite elements, converge 
quadratically toward the exact values of !P> = 0.08 and R, = I, the slope of the con- 
vergence curve for the hybrid elements being smaller. This means that the value of c 
in Eq. (1 j is smaller for the nonconforming approach than for the conforming one. 

For the case with a=O.4, E= 2, and dp/d!f’= -2.5, we see in Fig. 4 that the ccn- 
forming approach has convergence behavior similar to that of the hybrid one. In 
Fig. 5 we show the convergence behavior of the quantity Y, fixing either N, = 20 or 
N, = 20. The error for N, = 20 is much smaller than that for Ne = 20. We find that 
N, of the order of -3N, is necessary for a balanced convergence study. The 
different convergence behaviors are due to the choice of nonconforming finite 
hybrid elements. 

Fixing the elongation at E = 2 and dp/dY= -2.5 and increasing the aspect ratio 
such that a = 0.25 makes the convergence properties of the conforming approach 

‘u’s ho-' 1 Ro 
I 

1.61 

1,6o L--I, 
/’ 

= (2,9)conforming 

(‘Ts) hybrid 

64 32 21t 20 6L 32 24 2;s’ 

N,= N, N,= N, 

FIG. 4. Convergence studies for YS and R, for the conforming and finite hybrid element approaches. 
Solov’ev equilibrium: E = 2. A = 0.4, dp/dY = -2.5. The analytic values are Y, = 0.16 and R. = 1. 
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Ys ho-') 

t 
------.---. /=------. 

1.610 _ /- - 
N4=20 

/ 

/' 

1.605 

.’ 
I I , 

64 40 32 24 20 

N, or N, 

FIG. 5. Finite hybrid elements: convergence studies in N,, for fixed IV,= 20 and in N, for fixed 
N,, = 20. 

superior to those of the hybrid approach as we can see in Fig. 6. This is due to the 
superior integration formula (4-point Gauss integration formula) used for the con- 
forming elements which allows a better representation of the plasma surface term 

-------. ------ 
(X,4Iconforming 

I \ (r-,2) 

I f\ I I I 

64 32 24 20 

N,= N, 
FIG. 6. Convergence studies for !f’J for the conforming and finite hybrid element approaches. 

Solov’ev equilibrium: E = 2, a = 0.25, dp/d!f’= -2.5. The analytic value is ‘?, = 0.0625. 



COMPUTATION OF MHD EQUILIBRIA 181 

containing (dp,/dB)/p in Eq. (13 j. Comparing these results with those presented in 
Ref. [4] using (r, z) coordinates (Eq. (12)), one realizes that 3 to 10 times fewer 
intervals have to be taken in both directions to obtain the same precision when 
using (a, 0) coordinates. 

5.2. JET Equilihriwn 

As a practical application we calculate the equilibrium solution for a JET (Joint 
European Torus) geometry. The parameters of the JET tokoamak are R0 = 2.96 m, 
a I= 0.423, T= 10.4 Tm, E= 1.68, and I= 4.8 x 10’ A. For the two free functions of 
the source term we choose 

p(t,b/t,b,) = 38.1 ($,I$,? - 5.2 (t&bjj3 N/cm’ 

T’ (I///$,) = 1 LO - 2.85( I&$,)’ T’m’, 
(351 

which correspond to a case with p = 2.5%, close to the Troyon stabihty limit [l16]. 
The plasma surface r is D-shaped and given by 

rr= 2.96 (1 + u cos(B + 0.3 sin 0)) m 

r = 2.96 . E a sin 0 m. z 
(36) 

The quasi-inverse solution afly, 6), found by adjusting ie such that the grid points 
fall on Y = constant surfaces, is represented in the (r, 2) plane in Fig. 1. The con- 
vergence properties for the conforming and finite hybrid element approaches are 
shown in Fig. 7. As for the Solov’ev case, the finite hybrid elements have at Least as 
good convergence properties as the conforming elements. 

Y, (10-21 R, 6-r-i) 

1 

.- 

‘. 
Ji 

3,262 1 

:_ 

m.,4i cF/ 

/‘ 
I------- 

.-------* 

\ 

(ae,Bl hybrid 

3.259 I?,= 3.2604 

3 I 
__ 

FIG. 7. JET geometry: convergence studies for YI and X0 for conforming and finite hybrid eieme:\; 
approaches. 
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Moreover, for a given resolution, the calculation of an equilibrium using hybrid 
elements is about two times faster than using a conforming approach. 

6. CONCLUSIONS 

We have compared two finite element approaches, the conforming and a noncon- 
forming one, by applying them to the Grad-Shafranov equation. It is found that 
the nonconforming finite hybrid element approach shows better convergence 
behavior in most cases for the global quantities such as total flux or position of the 
magnetic axis. This hybrid approach is easier to implement and only needs a one- 
point integration formula for the calculation of the matrix elements. As a con- 
sequence, a relevant gain in computing time is obtained and the full vectorization of 
the matrix construction is simplified. After their success in the stability problem 
(Ref. [I]), the hybrid elements have also shown their superiority to the conforming 
elements in the calculation of ideal fixed boundary MHD equilibria. 
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